
PolicyKit: Building Governance in Online Communities
Amy X. Zhang1,2, Grant Hugh2, Michael S. Bernstein2

University of Washington1 Stanford University2

Seattle, WA Stanford, CA
axz@cs.uw.edu ghugh@stanford.edu, msb@cs.stanford.edu

ABSTRACT
The software behind online community platforms encodes a
governance model that represents a strikingly narrow set of
governance possibilities focused on moderators and admin-
istrators. When online communities desire other forms of
government, such as ones that take many members’ opinions
into account or that distribute power in non-trivial ways, com-
munities must resort to laborious manual effort. In this paper,
we present PolicyKit, a software infrastructure that empowers
online community members to concisely author a wide range
of governance procedures and automatically carry out those
procedures on their home platforms. We draw on political
science theory to encode community governance into policies,
or short imperative functions that specify a procedure for de-
termining whether a user-initiated action can execute. Actions
that can be governed by policies encompass everyday activities
such as posting or moderating a message, but actions can also
encompass changes to the policies themselves, enabling the
evolution of governance over time. We demonstrate the expres-
sivity of PolicyKit through implementations of governance
models such as a random jury deliberation, a multi-stage cau-
cus, a reputation system, and a promotion procedure inspired
by Wikipedia’s Request for Adminship (RfA) process.

CCS Concepts
•Human-centered computing → Collaborative and social
computing systems and tools;

Author Keywords
governance; policy; toolkit; moderation; online communities

INTRODUCTION
“In democratic countries the science of association is
the mother science; the progress of all the others de-
pends on the progress of that one.”–Alexis de Tocqueville,
1835 [10]

Millions of communities gather in online spaces such as Slack
workspaces, Reddit subreddits, Facebook groups, and mailing
lists. These communities fill an important part of our everyday
lives [42] and go on to shape broader social institutions [58].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’20, October 20–23, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7514-6/20/10 ...$15.00.
http://dx.doi.org/10.1145/3379337.3415858

As a result, decisions around the governance of online com-
munities, such as who can join, what content is allowed, and
the consequences for breaking rules, have great importance.
Today, this governance is predominantly expressed as a model
consisting of roles and permissions, where groups such as
administrators and moderators have broad privileges over reg-
ular users. This roles-and-permissions model has its roots in
the UNIX file permissions model developed nearly fifty years
ago [65], and it is a model now enshrined within the software
of almost all major community platforms.

But governance via roles and permissions describes only a
narrow set of governance possibilities. This approach also
encodes certain values, making it easier to implement gover-
nance that is top-down, autocratic, and punitive [21, 66, 67].
There are many cases where an online community may prefer
or be better served by a different style of governance. For
instance, the English Wikipedia community has chosen to
make major decisions through a deliberative process where
all users can provide input [5, 29]; the node.js project follows
a consensus-seeking decision model [18]; and Slashdot prac-
tices meta-moderation where the moderators themselves get
reviewed [45]. Each of these processes embodies the particular
flavor of the participatory values of its community [34].

Unfortunately, the software underlying most community plat-
forms cannot support these alternative forms of government.
Wikipedians must carry out their deliberative procedure man-
ually, with some help from custom-written bots, instead of
relying on MediaWiki software, which itself only embeds a
permissions model. Manually carrying out governance proce-
dures is cumbersome and error-prone. In addition, community
members may not be aware of policies or choose not to com-
ply with them [6, 51]. Given the difficulty involved, it is no
surprise that most online communities use their platform’s
default permissions model, even when it may not be a good
fit. Without the flexibility to articulate new governance mod-
els, communities have few options when contending with
problems common to moderated communities, ranging from
moderator burnout [12, 25, 63], to being overwhelmed by
newcomers [35], to surviving a legitimacy crisis [9].

In this work, we present PolicyKit, a software infrastructure
that empowers online communities to create a broad range of
governance approaches by writing a small amount of code.
This governance is then automatically carried out on behalf
of the community on the community’s home platform such as
Reddit or Slack. Unlike a standard permissions model, where
an action such as “post a message to the group” depends on
the permissions granted to the user performing the action, Pol-
icyKit enables community members to author short executable

Platform Integration PolicyKit WebsitePlatform
Users attempt

platform actions platform action listener Users propose
constitution actions

Editor to author
policies

passed platform
actions execute

platform action executor

PolicyKit Server

A

C
Ex: “Post a message” Ex: “Add a new policy”

B
proposed actions are

checked against policies

Policy Engine

Figure 1. Rather than following a permissions model, PolicyKit represents governance as a set of procedures that are used to make decisions. (A) Users
attempt everyday actions, such as posting a message, on their community platform. These actions are caught by PolicyKit’s action listener and checked
against policies in the policy engine. Each policy articulates an action scope and a procedure for determining whether those action can pass, for example,
a vote by platform members. If the action passes, it executes back on the platform. (B) Users initiate constitution actions that alter the community’s
governance policies. These also go to the policy engine and execute there if passed. (C) Users can author policies within an editor in the PolicyKit
website. If the policy passes (via a constitution action), it becomes one of the policies that the policy engine considers when checking actions.

scripts, or policies, that specify a procedure—a set of steps
to follow—for determining whether an action can execute. A
policy might, for example, require that three random commu-
nity members review the message and approve it through a
majority vote. Drawing from Ostrom’s Institutional Analysis
and Development (IAD) [60], a theoretical framework for de-
scribing governance arrangements, PolicyKit’s main insight is
to shift governance from articulating permissions to articulat-
ing procedures, where procedures can express a wide range
of governance models concisely, including participatory and
democratic models. And since policies are written in code,
PolicyKit can execute them as specified without requiring
manual effort from users each time. The actions that can be
governed by policies include everyday actions that take place
on a platform, such as posting a message, as well as actions
that alter the governance model itself, such as introducing a
new policy (Figure 1). This allows communities to evolve
their governance over time using PolicyKit.

We envision that PolicyKit will allow communities to iter-
atively develop governance of their own design, as well as
fork, borrow, and remix governance policy code from other
communities. In support of these goals, the PolicyKit software
infrastructure contains the following components to enable
governance building: 1) a software library to help users articu-
late policies in code, 2) a continually-running server process
that executes policies against actions in the community, 3) a
platform integration allowing PolicyKit to know when actions
have been attempted on the community’s platform and be able
to execute passed actions on the platform, and 4) a website
where members can propose actions to alter the governance
model and also author policies in a code editor.

In the following sections, we describe PolicyKit’s abstractions,
how to write policies in PolicyKit, and example implementa-
tions of a range of policies. These policies include democratic
approaches such as a random jury deliberation and an election,
as well as one inspired by Wikipedia’s Request for Admin-
ship (RfA) process. We also demonstrate a caucus involving
multiple stages, a policy that calls an external API, and one
that keeps track of reputation to unlock privileges. Finally, we
describe how to integrate a platform into PolicyKit and present
implementations of integrations with Slack, Reddit, and Dis-
cord. Our aim with PolicyKit is to lay the foundation for a
broad space of interactive tools that empower communities to

develop mature governance to suit their values and needs, and
that in turn, give everyday people greater self-determination
over the social platforms that influence their lives.

BACKGROUND AND MOTIVATION
Despite early visions of the social web as an open and partici-
patory space [3], the first online communities were governed
as technocratic autocracies, primarily due to the need for an
“admin” with technical skills to own and operate the server that
the community software ran on [65]. While admins sometimes
chose to carry out governance that was closer to anarchy or
democracy in practice [11, 55], admins still had the ultimate
authority to shut down the server or kick users out. Admins
also had the ability to appoint users to “mod” roles in order to
spread the work of governing.

Undeterred by the need for admins, some communities still
experimented with alternative governance models. A notable
example is LambdaMOO, which moved from a benevolent
dictatorship governed by “wizards” toward a petition system
involving voting, where wizards were relegated to implement-
ing the outcome of votes [55]. While some custom code
facilitated making a petition, most of the procedure of the
petition system was carried out manually. Some parallels can
be drawn to English Wikipedia, another community with a
more democratic model. Like other peer production commu-
nities such as GNU/Linux, a core tenet of Wikipedia is its
openness in permitting contributions [17]. However, conflicts
arise, and over time, Wikipedia has grown a number of pro-
cesses involving petitions and votes to address conflicts [29].
Similar to LambdaMOO, most of these processes are carried
out manually, with the help of custom bots to perform some
tasks such as documentation [56], and final execution is often
left to admins who can implement procedure outcomes [38].

Today, communities with community-created procedures for
governance, like LambdaMOO, Wikipedia, and open source
projects like Debian, are the exception rather than the rule.
This is because carrying out governance manually places a
heavy burden on a small number of people. The individu-
als who have the power to implement the policies burn out
due to the amount of work and stress involved in governing,
sometimes leading them to leave the community entirely [39]
despite being core contributors [4]. Part of the issue is that by
continuing to rely on users with privileged access, individuals

ostensibly tasked with only policy execution still find them-
selves pressured and politicized by community members [29].

As a result, most communities follow the default governance
pattern made easy to adopt by their platform software. A few
platforms have taken the step to build new governance models
directly into their software. For instance, Slashdot and Stack-
Overflow have a reputation system where users gain points
in order to unlock greater power [45, 49]. Other examples in-
clude League of Legends [41] and Weibo [40], two platforms
that created jury systems for adjudicating user conflicts. How-
ever, these alternative governance models were designed and
implemented by platform developers, as opposed to by mem-
bers of the community. If community members wish to, say,
change how reputation is calculated, they have no procedure
for doing so, except to directly petition the platform in a form
of collective action [7, 50] or leave for another platform [16,
28]. While the threat of such actions can blunt centralized
power, resulting in “benevolent dictatorships” [62], the lack of
structured ways to enact change can itself mask power [19].

While unable to alter platform software directly, community
members can still make use of software tools to support some
aspects of governing, such as tools for deciding and carrying
out policy. For instance, many third-party tools exist to help
communities come to consensus on decisions. These include
tools to poll opinions that make use of visualization to surface
points of agreement [14, 43], as well as deliberative tools to
help members consider each other’s perspectives [15, 37, 44,
70]. They also include systems to support delegating votes
at scale [27], and systems that incorporate competition [48]
and cooperation [64]. While these tools provide novel ways
for community members to give input on individual decisions,
the question of how to provide and combine input is only one
small part of a governance procedure. A fuller accounting
of governance must specify aspects such as who can provide
input, when can they provide input, what happens after a
decision is made, and how decisions can be overridden or
vetoed. In addition, none of these tools automatically interface
with the community, and instead require an admin to carry out
decisions. Even in-house tools for collecting opinions such as
Facebook Polls have no enforcement capability.

Other software tools are focused on better execution of gov-
ernance but provide no mechanism for proposing or deciding
on policies. Examples include Reddit’s AutoModerator tool
for mods to author rules for their subreddit [30], or the wide
variety of bots on Wikipedia that perform administrative tasks
such as tagging, archiving, and fixing [24, 71]. In many cases,
these automation tools are not, or do not start out, embedded
in a platform but grow separately as one-off bespoke pieces
of software [22], making them more difficult to author and
manage. Additional tools exist that help mods create better
policies [8, 52] but still are focused on the role of mods. Fi-
nally, some tools exist that are aimed at regular members of a
community [23, 32, 46], but these are primarily only used to
enact policies for an individual as opposed to a group.

While all of these software tools help communities with one
or a few aspects of governance, none are broad enough to de-
scribe and implement an end-to-end governance procedure of

All new policies or changes to policies
must be passed by two-thirds vote.

Actions: one-off events
that users can propose

Policies: continually-running
statements governing
proposed actions

Maya would like to propose
a new policy P.

Han is nominated as a new
moderator.

Moderators are approved after 2 days
unless an existing moderator vetoes.

Co
ns

tit
ut

io
n

To post to the group, the message
must first be approved by a moderator.

Sara would like to post a
message M to the group.

Adam would like to rename
#news to #announcements.

To rename a channel, a random jury of 3
members must approve the new name.

Pl
at

fo
rm

Figure 2. Left: actions, or one-off events that users can propose. Right:
policies, or procedures that govern the actions on the left. Policies are
stated here in natural language but in PolicyKit are written in code.
We further differentiate actions and policies that happen on a platform
from actions and policies that relate to the constitution of the community,
which articulates procedures for creating and editing policies.

substantial complexity. PolicyKit’s strength lies in its frame-
work that structures and simplifies the task of writing software
to support governance, but still provides the flexibility and
power to implement a wide range of governance models.

POLICYKIT: BUILDING GOVERNANCE WITH SOFTWARE
We introduce PolicyKit, a software infrastructure for online
communities to build governance that can be directly enacted
on their home platform. Instead of articulating permissions,
PolicyKit enables communities to author policies for how
actions can be carried out, opening up a wider range of gov-
ernance models, including more democratic ones. PolicyKit
provides a framework built on a set of software abstractions
for succinctly articulating governance in code; this then al-
lows governance to be carried out by software on the platform
instead of manually by users.

Abstractions: Actions and Policies
Governance models such as a random jury or a direct democ-
racy require input by one or more members before an activity
can be approved. Other governance models may go through
a series of checks in different stages. In general, these gov-
ernance models all require the articulation of some sort of
procedure to arrive at a decision rather than a single permis-
sions check. PolicyKit’s design is motivated by the insight that
across these myriad procedures, we can describe the specific
behavior that is being proposed separately from the rules being
used to determine whether that behavior is allowed to proceed.
This insight draws from the work of political scientist and
Nobel Laureate Elinor Ostrom, who studied offline communi-
ties governing common pool resources. The IAD framework
developed by researchers at the Ostrom Workshop broadly de-
scribes complex governance arrangements and centers around
actors engaging in an “action situation” where they perform
actions in light of an existing structure of rules [53].

Given this, the two main abstractions within PolicyKit are
actions and policies. An action is a one-time event that can
occur within a community and is typically first proposed by a
community member. In contrast, a policy is a declaration that
must always be true and that governs some user capability. For

instance, a policy for joining a community might be: “To join
the community, a user must be approved by at least one existing
member of the community.” We state policies here in natural
language for ease of explanation; in a later section, we describe
how PolicyKit expresses these policies in code. An example
of an action that would be governed by that policy would
be, “Sanjay joins the community.” Policies can govern one or
more actions. Thus, when a user attempts an action, before
it can be carried out, any policies that govern the action must
first approve it. Additional examples of actions and policies
governing them are provided in Figure 2, such as being added
as a moderator or posting a message to a protected channel.

Layers: Platform and Constitution
Ostrom further distinguishes between several “arenas of
choice” where action situations can occur. In the IAD frame-
work, researchers separate out a “constitutional choice” layer
for participatory change in a government’s overall design [20,
36, 54]. This layer is separate from the others that are des-
ignated for the execution of that design. Ostrom stressed the
importance of a constitutional layer in governance, finding that
successful communities follow the principle that “...those af-
fected by the rules can participate in modifying the rules” [60].
Taking inspiration from these layers, we separate out the ev-
eryday actions that take place in a community and the policies
that govern them (the “operational” and “collective choice”
layers of the IAD framework) from actions that are intended
to change the governance model itself and policies governing
those (the “constitutional choice” layer). We coin these two
layers platform and constitution, respectively, where this axis
defines what the action or policy is targeting. Examples are
shown in Figure 2.

Platform actions are one-time events that correspond to a
user capability on the platform. This can include posting a
message, joining a channel, or editing a wiki, depending on
the platform in question. Platform actions tend to happen
frequently as they make up the day-to-day activities of the
community. Platform policies describe procedures that govern
platform actions. For instance, a platform policy could be
that “All posts to this community must not use swear words.”
A platform action such as “Rosa would like to post ‘hi!’ to
the community” would need to check to ensure the policy
is met before executing. Constitution actions involve one-
time events that alter how governance is done, for instance,
appointing a person to a new role, or changing an existing
policy. Constitution policies describe procedures that govern
constitution actions. For instance, a constitution policy could
decree that “Any change to an existing policy must be passed
by majority vote,” and a constitution action could be that

“Ayeesha wants to change the policy about majority vote to also
stipulate that there must be a quorum of at least 10 voters.”

PolicyKit Software Infrastructure
We build off of these abstractions to provide a software frame-
work for authoring policies, proposing actions, checking ac-
tions against policies, and carrying out passed actions on a
community’s platform of choice. In order to provide these
capabilities, PolicyKit consists of the following components:

• A software library for concisely authoring policies in the
Python programming language,
• A policy engine, or a continually-running server process

that waits for proposed actions and checks them against
policies to see whether they can pass,
• A platform integration to a community’s platform where

members can attempt platform actions as well as vote on
actions while going about their regular activities, and where
passed platform actions can execute, and,
• A web interface where members can install PolicyKit to

their platform, propose constitution actions, and author poli-
cies in a code editor.

Combining all these components, a community that wishes
to use PolicyKit goes through the following process. First, a
platform integration must already exist for the community’s
platform; once any developer has written an integration, every
community on that platform has the ability to install PolicyKit.
We have thus far implemented integrations for Slack and Red-
dit. To install PolicyKit to their community, a current admin
of the community must go to the PolicyKit website and grant
permission to the tool to be able to perform admin activities
via the platform’s API. Then, PolicyKit instantiates a new in-
stance tied to the community and installs an initial governance
model consisting of a single constitution policy governing all
constitution actions. Our governance “starter kit” requires
a direct majority rule for constitution actions to pass; in the
future, additional starting policy positions could be provided
for communities to choose between.

From there, community members can propose actions, as
shown in Figure 1. For instance, they could use PolicyKit’s
web code editor and the software library to author a new policy
that replaces the initial constitution policy or creates the first
platform policy—these proposed changes form constitution
actions. Meanwhile, the policy engine on the PolicyKit server
is continually checking all proposed actions against existing
policies to see if they can execute. When constitution actions
pass, they execute on the PolicyKit server.

On the platform, members continue to conduct their everyday
activities while PolicyKit’s platform integration listens for
actions. When an action is attempted, PolicyKit immediately
receives an event from the integration and sends it to the policy
engine to see whether the action can execute given existing
policies. If it is not yet allowed to execute, the platform
integration immediately reverts the action on the platform,
notifies relevant users about votes they need to make, and
listens for their votes. Once the policy engine determines that
a platform action can execute, it uses the platform integration
to carry out the action on the platform.

In the next sections, we describe details of the PolicyKit in-
frastructure. Following that, we describe extensions to the
basic PolicyKit infrastructure as well as examples of policies
authored in PolicyKit.

POLICYKIT DATA MODEL
The data model underlying PolicyKit, shown in Figure 3,
builds on the abstractions of actions and policies and is com-
prised of the PolicyEngine library, which defines general-

PlatformPolicy

ConstitutionPolicy

Constitution

Platform

PolicyEngine

Community

SlackIntegration

initiator
proposal

BasePolicy BaseAction UserVote
proposal
user

RedditIntegration ...

general governance

platform-specific classes for authentication and API bindings
, ,

Proposal
status = PROPOSED

PASSED
FAILED

User

PlatformAction

ConstitutionAction

SlackPostMessage
RedditMakePost
...

AddConstitutionPolicy
AddPlatformPolicy
...

SlackUser
RedditUser
...

SlackCommunity
RedditCommunity
...

Figure 3. The PolicyKit data model contains general-purpose objects in the PolicyEngine library, as well as platform-specific objects in a platform
integration library. The PolicyEngine library defines policies at the platform and constitution layer, as well as actions at the constitution layer. Each
platform integration library defines platform-specific actions and their bindings to the platform’s web API, plus a Community and User subclass.

purpose classes related to governance, as well as additional
libraries, one for each platform to which PolicyKit can con-
nect. Policy classes contain fields that store user-written code
for carrying out a policy, while action classes contain fields
and methods to help carry out a particular action. Within
platform integration libraries, additional actions are defined
that correspond to all governable actions on a platform. For
instance, our implemented RedditIntegration library de-
fines a platform action RedditMakePost for making a post
on Reddit using their web API. As mentioned, actions are
proposed by a community member and then must go through
a procedure to determine if it can be executed. Unlike per-
missions that can be evaluated instantly, procedures may take
some time to complete, particularly if they are waiting on user
input. To capture this information, each action class stores an
initiator as well as a proposal object that stores the status
of the proposal. We also collect user input in the UserVote
class. For instance, if a policy states that an action can execute
if a majority of the community has voted in favor, then part of
the policy’s procedure will check the proportion of votes in
favor of that proposal.

POLICIES AND THE POLICYENGINE WORKFLOW
We now describe how to write and execute policies. In translat-
ing our abstractions into a concrete software design, we focus
on the following design goals:

• Author concise, modular, composeable policies: Policy
authors should be able to express a broad range of gov-
ernance models without needing to write excessive code.
Logic that needs to be run repetitively to execute a pol-
icy need only be written once. Policies should be able to
compose, reuse, and build upon logic from other policies.
• Allow for human interaction and input: Governance

requires contention, disagreement, and relational work.
Systems without levers for these behaviors will be aban-
doned [26]. While policy authors should be able to create
fully automated procedures, they should also be able to
create procedures that give space to human relational labor,
debate, and nuanced judgment [1, 46, 64].
• Minimize security risks to communities: Communities

should be able to view their policy code, audit policy deci-
sions, test, and recover from undesired policy behavior.

if action.action_type == 'SlackRenameChannel':
 return TrueFilter

usernames = [u.username for u in users]
jury = random.sample(usernames, k=3)
action.data.add('jury', jury)

Initialize

jury = action.data.get('jury')
jury_users = users.filter(username__in=jury)
action.community.notify_users(action, policy, users=jury_users,
 text='Please deliberate amongst yourselves before voting')

Notify

jury = action.data.get('jury')
jury_users = users.filter(username__in=jury)
yes_votes = action.proposal.get_votes(users=jury_users, value=True)
if len(yes_votes) >= 2:
 return PASSED
elif action.proposal.time_elapsed() > datetime.timedelta(days=2):
 return FAILED

Check

action.execute()Pass

returnFail

random jury of 3 users to govern channel name changes

def check(action, policy):

def initialize(action, policy):

def filter(action, policy):

def notify(action, policy):

def pass_action(action, policy):

def fail_action(action, policy):

Policy:

Figure 4. This PlatformPolicy governs channel name changes on Slack
using a randomly selected jury of three users. Six functions must be
implemented to create a policy. In their code, authors have access to
community-specific objects (in pink) and helper methods (in cyan).

Given these goals, we break down a policy into a set of func-
tions that together articulate the actions that the policy applies
to, how to determine if an action in its jurisdiction will pass,
and what to do if an action passes or fails. Functions allow for
modularity, where each function is called at different periods
in a workflow, with some being called repeatedly.

In Figure 4, we present an example of a platform policy that
governs how channel names get changed on Slack. It stipulates
that a random jury of three users in the community must
approve any channel name changes by a majority vote within
two days. In Figure 5, we show how policy functions are
called within the PolicyEngine workflow, a server process
that periodically iterates through proposed actions. Once any
new action is proposed by a user, either by invoking it on the
PolicyKit website or on a particular community platform, it
passes through the PolicyEngine workflow, first calling the
filter() function for each policy. All functions are passed
the action object that is being evaluated and the policy object
of the function.

Filter: This function specifies the scope of the policy, or what
types of actions the policy governs. The function returns True

for each
policy

for each
policy

Filter

wait
1 min

for each
proposed
action

1. on new action

2. periodic task

InitializeFilter

Pass Fail

NotifyCheck

Pass Fail

Check

Figure 5. The workflow in PolicyEngine to check actions against poli-
cies: Once an action is created, we call filter() for each policy to deter-
mine if the action is in scope. If it returns True, initialize() runs to
set up the proceedings (e.g., choose a jury), followed by check() to test
if the action can pass already. If the action fails or passes at this point,
we can exit the workflow. Otherwise, we run notify() and move into
a periodic task where all actions that still have status=PROPOSED are
periodically checked against all relevant policies until they pass or fail.

if the policy governs the action object passed in as an argument.
For instance, if the policy is meant to cover only one type of
action, the function can check the action_type field of the
action object. The policy could also filter on the initiator
of the action or even the time of day, if, for example, the
community has decided that Friday evenings are a free-for-all
in a particular channel.

Initialize: If filter() returns true, the action in question
is considered in scope for this policy, and we move on to
initialize(). Within this function, the author can specify
any code that must be completed once at the start of the policy
to set it up. For instance, in the jury example, initialize()
selects the random jury who will decide on the action.

Check: The check() function specifies the conditions that
need to be met so that an action has passed or failed. For
example, it may test whether a vote has reached a quo-
rum, or whether an elected individual has responded to
the proposal. When created, all actions have a status of
PROPOSED. New actions first encounter check() immediately
after initialize(); this is so that in case the policy can al-
ready pass or fail, we can exit the workflow early. For instance,
if there was a policy that holds messages containing profanity
for review by a moderator, the policy would automatically
pass actions that do not contain profanity. As long as an ac-
tion is still PROPOSED, check() will run periodically until it
returns PASSED or FAILED. If check() does not return any-
thing, PROPOSED is presumed. For instance, if a policy calls
for a vote from users, such as in the case of the jury policy in
Figure 4, it may take time for the required number of votes to
come in. The policy’s check() function could also specify a
maximum amount of time, at which point the action fails; in
the jury example, the action has a maximum of two days.

Notify: If the policy involves reaching out to one or more
community members for input, then the code for notifying
members occurs in this function. While policy authors can
send messages to users in any function, this function is specif-
ically for notifications soliciting user input. Authors may
use the helper method notify_users() to send messages to

community members, with ability to customize the post. For
instance, the notification post can include instructions, such as
to deliberate the action before voting. This function is only run
once, after a new action does not return PASSED or FAILED
from the first check(), so as to not unnecessarily notify users.

Pass: This function runs if an action is passed. Each action
class implements an execute() method that policy authors
can call to carry out the action. Other code that could go
here include post-action clean-up tasks such as announcing
the outcome to the voters or to the community.

Fail: This function runs if the action fails to pass the policy.
For instance, the author could add code to invoke fall-back
actions due to failure, or share the outcome privately with the
proposer alongside an explanation of why the action failed.

Software Library and Security
Within each policy function, users have access to all
community-specific objects such as users, policies, and ac-
tions, along with their public methods, in addition to the direct
policy and action in question. This is shown in Figure 4 with
the objects highlighted in pink. Filtering can be done using the
Django framework’s query syntax, as PolicyKit is an extension
of the Django framework, and community-specific objects are
passed in as a Django QuerySet as opposed to a list of ob-
jects. Users can also access related objects using Django’s
object-relational mapping. As seen in the cyan-colored text in
Figure 4, users have access to a number of helper methods at-
tached to objects to make common calculations such as count-
ing votes or determining how much time has elapsed since
a proposal. The full API documentation of user-accessible
classes, fields, and methods, as well as the open-sourced code,
is available on the PolicyKit website: https://policykit.org.

To enable custom storage, each policy object and action object
has a data field that points to a JSON object. For instance, in
the jury policy, a new random jury is selected for each action
that gets proposed, so the jury members for that action must
be stored in the action’s data object. Records that could be
stored in the policy’s data object could include the failure
rate of prior initiators (shown in the example below) or a list
of recent jurors to avoid oversampling.

fail_count = policy.data.get(action.initiator.username)
if not fail_count:
 policy.data.set(user, 1)
else:
 policy.data.set(user, fail_count+1)

Fail

def fail_action(action, policy):

fail_count = policy.data.get(action.initiator.username)
if fail_count and fail_count > 3:
 return FAILEDCheck

def check(action, policy):

...

Since PolicyKit policies can effect substantial changes to a
community, we must consider security. We designed Poli-
cyKit to ensure two principal security goals: (1) incorrect poli-
cies could be audited and their actions reverted; and (2) new
policies could be field tested without risking the community.
All PolicyKit policies are publicly visible to any community
member on the PolicyKit website. To handle buggy policies,
PolicyKit maintains a log of all actions, including their final
disposition (e.g., passed, failed), and the policy that made
that determination. This audit log allows the community to

https://policykit.org

Notify

@Amy renames the
channel #meetings to
#standup

SlackIntegration PolicyEngine
Listener catches the Slack
rename event. Create a
SlackRenameChannel
action object with proposal
status=PROPOSED

1 2 3 New action enters PolicyEngine workflow:

Filter
Initialize
Check

PlatformPolicy p: majority vote for renames

action type matches, returns True

checks votes, none exist, returns PROPOSED

Slack Platform

PolicyKit Server

4
@PolicyKit posts to
the channel
announcing the
proposed change
and asks for votes
via emoji reactions

@PolicyKit reverts the
channel rename

5

6 Listener listening for emoji
reaction events. For each one
reacting to this notify post,
create a UserVote object Filter

Check

7 Proposed action loops through periodic task

checks votes, eventually returns PASSED

Pass action.execute()
8 @PolicyKit renames

the channel to
#standup

PlatformPolicy p

store Slack post id of the notification post

Platform

community.notify_users()

action type matches, returns True

Figure 6. We show how PolicyKit integrates with platforms, using the example of Slack. 1) A user performs an action on Slack. 2) The
SlackIntegration library running on the PolicyKit server has listeners for Slack actions. After catching an action, it creates a new PlatformAction
object of that action type. 3) The proposed action enters the PolicyEngine workflow. If there is a policy that governs that action, it will run check()
to see whether it can pass or fail. 4) It cannot, so the action is reverted on the platform. 5) The policy’s notify() function runs, posting a notification to
the Slack channel. 6) As votes are cast, a listener creates UserVote objects tied to the action. 7) The action is still looping through the policy workflow,
where eventually it passes due to a change in votes. 8) Finally, the action executes on the platform after passing.

understand why an outcome occurred. All actions must be
revertable, so if a policy passed an action in error, it can be
undone through another action. To enable communities to field
test new policies without risk, PolicyKit allows policy authors
to leave the body of pass() and fail() empty—and in par-
ticular not to call the action’s execute() method—allowing
the community to use the audit log to track what a policy
would have done if it were live. After a trial period, commu-
nity members can then activate the policy by passing a change
that fully implements those functions.

PolicyKit’s software architecture sandboxes code where ap-
propriate. Policy authors cannot call private methods, access
objects not associated with their community, or import li-
braries beyond a few that have been pre-imported. They also
cannot directly query the database, though they can filter on
the community-specific objects that they already have access
to. We reflect on other attack models (e.g., subtly malicious
policy code, disgruntled admins pulling the plug on PolicyKit)
in the Discussion section.

INTEGRATING PLATFORMS WITH POLICYKIT
PolicyKit is an application that sits on its own server. However,
it would be prohibitive if users of a social platform needed to
go to PolicyKit for every governance task, such as proposing
an action or voting on a proposal. In addition, as PolicyKit
needs to enforce policies, it must have a way of stopping and al-
lowing actions that are carried out on the platform itself, since
the platform already has an existing governance that PolicyKit
must supersede. These capabilities are defined in platform
integration libraries that can be developed for any platform to
connect with PolicyKit. Once a single developer has created
an integration using a platform’s web API, any community on
that platform can use PolicyKit. Figure 6 presents an exam-
ple of an action that is attempted on a platform before being
governed by PolicyKit. This demonstrates the following nec-
essary components of a platform integration library as well as
requirements of the platform API.

In order to install PolicyKit to a community, there must be an
authentication workflow, such as OAuth, for at least one ad-
min or mod account to give access to PolicyKit so that it may
govern a broad set of actions, including privileged ones. The
platform integration must also specify ways to send messages
to users on the platform. For example in Figure 5, we message
users to solicit votes from the jury. In order for PolicyKit to
govern actions, it must know what platform actions are pos-
sible; these are specified via the creation of PlatformAction
classes. Actions typically are carried out via web API end-
points provided by the platform that are then made available
through an execute() method in the action class and un-
doable via a revert() method. Finally, the integration must
incorporate a listener to listen for user actions on the platform
as well as a listener for votes on a notification message. For
instance, votes could be recorded via an emoji reaction or a
reply to a notification message.

We have implemented platform integrations for the platforms
Slack, Reddit, and Discord, with some differences between
them due to their web API. For instance, our Slack and Discord
integration collects votes via emoji reaction to the notification
message, while the Reddit integration looks for replies such as
“+1” or “-1” to the message. We cannot collect Reddit votes
via their upvoting mechanism because their API does not ex-
pose votes per user. We additionally investigate the feasibility
of integrating other common community platforms, including
Facebook Groups, Twitch, Github, and Discourse, by inspect-
ing their API documentation. All inspected platforms have the
necessary API components, including OAuth authentication,
event listeners, notifying users, and action execution and re-
vert, to be integrated with PolicyKit. Facebook Groups is the
sole exception: no API endpoint exists to support reverts such
as deleting a message.

Performance and Scaleability
Once a community installs PolicyKit, it listens for all govern-
able events that occur within the community on the platform.

Figure 7. Screenshot of the PolicyKit homepage.

If the platform API does not support real-time webhooks,
there may be a slight lag in carrying out policy due to polling—
however, this lag is negligible considering the speed at which
actions typically happen in a discussion-based community.
However, webhooks would be needed to integrate PolicyKit
with, say, a gaming platform like Minecraft. Otherwise, check-
ing for actions and looping through policies are fast executions
that do not cause appreciable load on a server. As larger com-
munities use PolicyKit, we can move towards multiple servers;
since actions are atomic, they can be considered in parallel.

WEB INTERFACE
The PolicyKit web application allows community members
to view their community’s policies and audit log, as well as
draft new policies. If desired, members of the community can
propose any action (left column of Figure 7). Clicking on
an action leads to a page for authoring that action proposal.
For most actions, this simply involves filling out fields in a
form. However, for the constitution actions for proposing a
new policy or changing an existing policy, the authoring page
opens to a code editor where users implement the functions
that make up a policy. The editor includes syntax highlighting
and code autocompletion along with library documentation
to assist the author. In the middle column, users can see the
existing policies, including a natural language description of
each policy written by the policy author. Clicking in to the
policy allows users to inspect the code behind the policy. On
the right-hand side, users can see a log of past actions that
have passed or failed and the policies that governed them.

DATA MODEL EXTENSIONS
Previously, we described the basic data model focused on
policies and actions. While this structure along with the ability
to write open-ended code for policies allows for the creation
of a wide range of policies, we also wanted to provide ways to
more easily create certain types of policies that are common in
many governance systems today [57]. We describe extensions
to the basic PolicyKit data model to support these abilities.

Roles and Permissions: As mentioned, most platforms fol-
low a permissions model. While it is possible to implement
such a model within PolicyKit purely in policy code, since the
pattern is common, we extend the data model to incorporate it.

The data model additionally contains a Role and Permission
class and a series of constitution actions to alter roles. A role
contains a set of associated permissions and set of users who
have that role. Three Permission objects exist for each type
of action. Permission to view an action type permits a user to
view an action’s log on the PolicyKit website. Permission to
propose an action type gives the ability to create action objects
of that type, either via the PolicyKit website or by invoking
the action on the platform. Permission to execute an action
type means that a user can perform an action regardless of
any existing policies governing it. Platform integrations can
also define additional permissions. Each community starts out
with a base_role comprised of all members. As part of the
current “starter kit”, all users have view and propose permis-
sions on all actions. Over time, these permissions can change
as users propose changes or create new roles. In the future,
a different starter kit could replicate the roles of admins and
mods that exist in the community to allow for a more gradual
transition to a new style of government.

Documents for Codes of Conduct, Written Policies, etc.:
Not all policies within a community can be expressed or en-
forced via code. For instance, some are general guidelines
that users should keep in mind, such as “Assume good inten-
tions”. Many platforms have text space for community leaders
to write these guidelines; for instance, every subreddit has a
Rules section, as does Facebook Groups. Since communities
may desire to keep and also govern non-executable guidelines,
we add a Document class to the data model, as well as consti-
tution actions to alter documents. We start each community off
with a single empty document. There is a rich-text editor for
authoring documents on the PolicyKit website, and documents
are also displayed on the homepage.

Action Bundles: In the current framework, actions are pro-
posed and considered one by one. However, sometimes multi-
ple actions need to be considered as a group of possible actions.
A common use case is a vote between a selection of possible
actions: for example, the community will elect either Pablo
or Xinlan as the new President. To facilitate these governance
events, we introduce an ActionBundle class. This class is an
action just like other actions but it links to a bundle of other
actions. Action bundles have two types: election and combina-
tion. When a user puts forth an election action bundle, they are
proposing to select from a set of action options. When a user
puts forth a combination action bundle, they are proposing that
all the actions be considered together as one. Proposals are
made via the PolicyKit website. As elections involve select-
ing from multiple options, platform integrations must handle
them in their notification and vote listener implementation.
For instance, our Slack integration has a default template for
notifying users about election options and listens for number
emoji reactions as votes.

Policy Bundles: Similar to action bundles, sometimes multi-
ple policies need to be considered together as a single multi-
stage policy. For instance, it is common in offline governments,
such as the U.S. federal government, for a policy to involve a
vote by one set of people first; if a proposal passes that stage,
it is then voted on by a different set of people, and so on.

To permit these kinds of linked procedures, we incorporate a
PolicyBundle class. Policy bundles are just like other poli-
cies but they link to a bundle of other policies. By grouping
related policies together in this way, it is possible to propose a
constitution action to instate or modify a policy in the same
way for single-stage versus multi-stage policies.

Datetime Triggers for Actions: While we have only dis-
cussed actions triggered by users, it is also possible to pro-
grammatically create a new action within a policy’s function.
This can be useful in some cases; for instance, if an election
fails because there was no majority, the policy can launch a
new follow-up election. However, sometimes actions should
only become active after some period of time or on a cer-
tain date. To facilitate this, actions can be proposed along
with a datetime_trigger field that stores when the action
becomes active.

EXAMPLES
We now present a series of examples to demonstrate the expres-
sivity of the software library for authoring policies. Except
where noted, the entirety of the code for these policies is
included below.

Wikipedia Request for Adminship
After many years of evolution, Wikipedia has developed a pro-
cess for promoting editors to admins [5]. Below, we demon-
strate a constitution policy that takes inspiration from this Re-
quest for Adminship (RfA) process. In order to be appointed
to the role of Admin, a user must have over 500 edits and 30
days of tenure. (We omit code for gathering that information
due to space.) Their request is posted to an RfA noticeboard,
where they receive votes and respond to questions. Then, after
a period of 7 days, only a person with the role of Bureaucrat
can approve their request. A Bureaucrat can also close the
request before the 7-day period.

if action.action_type == 'AddUserToRole' and action.role.name == 'Admin':
 return TrueFilter

action.community.notify_users(action, policy, location='RfA Noticeboard')Notify

num_edits = get_edit_count(action.user.username)
tenure_count = get_tenure_count(action.user.username)
if num_edits <= 500 or tenure_count <= 30:
 return FAILED
votes = action.proposal.get_votes()
bureaucrat_role = roles.get(name='Bureaucrat')
bureaucrats = bureaucrat_role.user_set.all()
bureaucrat_votes = votes.filter(user__in=bureaucrats)
for vote in bureaucrat_votes:
 if not vote.boolean_value:
 return FAILED
if action.proposal.time_elapsed() > datetime.timedelta(days=7):
 for vote in bureaucrat_votes:
 if vote.boolean_value:
 return PASSED
 return FAILED

Check

action.execute()Pass

ConstitutionPolicy request for Adminship must be approved by a Bureaucrat after 7 days

def check(action, policy):

def filter(action, policy):

def notify(action, policy):

def pass_action(action, policy):

Election
It is not uncommon for communities to hold regular elections
to a position of leadership. Below is a constitution policy to
govern elections to elect the next Steward of a community.
The election runs for 5 days, after which all votes are tallied if
there is a quorum of 25% of members. In the pass() function,
we determine which candidate has the most votes, counting

maximum one vote per user. Then we remove the current
Steward from the role and appoint the winner of the election
by calling execute() on the specific action object in the
bundle that adds that user to the steward role.

if action.bundle_type == ELECTION:
 for a in action.bundled_actions.all():
 if a.action_type != 'AddUserToRole' or a.role.name != 'Steward':
 return False
 return True

Filter

action.community.notify_users(action, policy)Notify

if action.proposal.time_elapsed() > datetime.timedelta(days=5):
 votes = action.proposal.get_votes(users=users)
 users_voted = set([vote.user for vote in votes])
 if len(users_voted)/len(users) > .25:
 return PASSED

Check

tally = defaultdict(int)
candidates = action.bundled_actions.all()
for user in users:
 selection = []
 for candidate in candidates:
 vote = candidate.proposal.get_votes(users=[user], value=True)
 if vote:
 selection.append(candidate)
 if len(selection) > 0:
 sv = sorted(selection, key=lambda x: x.vote_time, reverse=True)
 tally[sv[0]] += 1
steward = roles.get(name='Steward')
steward.user_set.clear()
results = sorted(tally.items(), key=lambda x: x[1], reverse=True)
results[0][0].execute()

Pass

ConstitutionPolicy democratic election to pick the next steward of the community

def check(action, policy):

def filter(action, policy):

def notify(action, policy):

def pass_action(action, policy):

Two-Round Caucus: Pipelined policies
Two-round caucuses are common in many U.S. state primary
elections. Below is an example of a policy bundle that imple-
ments this procedure. Unlike the election shown previously,
candidates below a vote threshold are dropped after Round 1
and then users who voted for them get to switch their vote to
another candidate in Round 2. We demonstrate how compo-
sition can be used across policies by calling functions from
the prior election policy instead of duplicating its logic. In
both of the bundled policies, we use the action’s data field
within filter() to make sure the policies are executing in
the right order. In Round 1’s pass(), after tallying up votes,
we remove non-viable candidates from the action bundle and
remove votes for those candidates. We also store the voters
who can switch their votes inside data so that they can be
notified in Round 2. We omit check() functions that would
be the same as in the election example.

if action.data.get('passed_round_1_caucus'):
 return False
return policies.get(name='Democratic Election').filter(action, policy)

Filter

tally = tally_up_votes()
redo_voters = set()
for candidate in tally:
 if tally[candidate] < 5:
 candidate.fail()
 action.bundled_actions.remove(candidate)
 candidate_votes = votes.filter(proposal=candidate.proposal)
 for vote in candidate_votes:
 redo_voters.add(vote.user.username)
 candidate_votes.delete()
action.data.add('redo_voters', list(redo_voters))
action.data.add('passed_round_1_caucus', True)

Pass

def filter(action, policy):

def pass_action(action, policy):

2-round caucus to pick the next steward of the community
Round 1 democratic election, after which candidates with fewer than 5 votes are dropped

Round 2 users who voted for non-viable candidates can change their votes

if action.data.get('passed_round_1_caucus'):
 return True
return policies.get(name='Democratic Election').filter(action, policy)Filter

def filter(action, policy):

redo_voters = action.get('redo_voters')
redo_users = users.filter(username__in=redo_voters)
action.community.notify_users(action, policy, users=redo_users)

Notify

def notify(action, policy):

ConstitutionPolicyBundle

policies.get(name='Democratic Election').pass_action(action, policy)Pass
def pass_action(action, policy):

Toxicity Filter on Comments
PolicyKit can integrate with external web APIs to support
governance. In this example, a platform policy calls the Jigsaw
Perspective API [33], to return a toxicity score for the text,
which the policy uses to filter out toxic comments. By being
able to call external APIs, PolicyKit policies can use resources
on the internet to augment their capabilities. Communities
can also develop additional governance capabilities outside of
PolicyKit, allowing policies to become arbitrarily complex and
store data externally that is larger than what can be reasonably
placed inside a JSON object. For instance, a policy that does
not allow users to post links that have been posted to the
community before needs to store a table of all prior links
posted. If this list becomes long, it would be faster to store the
links in an external database that a policy can then query.

if action.action_type == 'RedditMakePost':
 return TrueFilter

url = ('https://commentanalyzer.googleapis.com/v1alpha1/' +
 'comments:analyze?key=API_KEY')
data_dict = {'comment': {'text': action.text},
 'languages': ['en'],
 'requestedAttributes': {'TOXICITY': {}}}
data = urllib.parse.urlencode(data_dict).encode()
response = urllib.request.Request(url, data=data)
rd = json.loads(response.content)
value = rd['attributeScores']['TOXICITY']['summaryScore']['value']
if value < 0.9:
 return PASSED
return FAILED

Check

action.execute()Pass

PlatformPolicy All posts to the subreddit must pass a toxicity filter from Perspective API

def check(action, policy):

def filter(action, policy):

def pass_action(action, policy):

Reputation System
Taking inspiration from sites like StackOverflow, PolicyKit
allows reputation to be tracked via a policy that filters for rele-
vant actions and updates the policy’s data field to store user
reputation. A separate policy can then check the reputation
score and give users privileges based on that score.

if action.action_type == 'SlackPostMessage' and len(action.text) > 15:
 return TrueFilter

def filter(action, policy):

reputation system where users who post more have more privileges
Reputation Tracker users gain reputation in a channel by posting more in that channel

Privilege Distributor users who have enough reputation gain channel privileges

if action.action_type in ['SlackRenameChannel','SlackKickChannel',
 'SlackJoinChannel']:
 return TrueFilter

def filter(action, policy):

PlatformPolicyBundle

channel = policy.data.get(action.channel)
score = channel.get(action.initiator.username, 0)
channel[action.initiator.username] = score + 1
policy.data.set(action.channel, channel)

Check

def check(action, policy):

reputation_policy = policies.get(name='Reputation Tracker')
channel = reputation_policy.data.get(action.channel)
score = channel.get(action.initiator.username, 0)
if score > 10 and action.action_type == 'SlackRenameChannel':
 return PASSED
elif score > 50 and action.action_type == 'SlackJoinChannel':
 return PASSED
elif score > 100 and action.action_type == 'SlackKickChannel':
 return PASSED

Check

def check(action, policy):

DISCUSSION
PolicyKit provides a low-level infrastructure for building gov-
ernance in online communities. The introduction of PolicyKit
unlocks a range of higher-level extensions that could be built
on top of the system and enables new research directions.

Extending Expressivity of Governance Authoring
While there are many governance models that PolicyKit can
implement, our framework could provide additional scaffolds

to more easily express certain complex forms of governance.
For instance, while users can author multiple policies that
govern the same action, the current process for determining
what happens if they conflict is cumbersome—involving using
policies’ data store to set precedence as we showed in the
caucus example. More broadly, an extension to the data model
could support logic to define different kinds of relationships
between policies beyond policy bundles. There may also be
use cases for policies that dynamically activate or that activate
based on modes. For instance, a school’s online community
might have one set of policies they wish to activate only during
the first week of school when many new members are added.

In addition, there are no existing scaffolds to support collabo-
ration on proposals or update pending proposals, in order to,
for instance, merge two proposals together. To support this
activity, the website would need additional features surround-
ing action proposals, such as comments or suggestions. There
is also a question of the governance of the proposal itself.
Currently, proposals have an initiator who would serve as the
owner of the proposal. But in the future, proposals might be
authored by multiple people or allow input from all members.
A simple example is hosting an open election for a role, where
anyone can nominate someone by adding to the action bundle.

Building Towards End Users
The current version of PolicyKit requires programming skills
to author a policy. Additional tools such as a debugger, logging
mechanisms, and tools for monitoring and testing could help
make the programming process easier for users. Communities
that prefer not to code could also copy scripts from other
communities, much like how Reddit mods pass around regular
expressions that feed into Reddit Automoderator. However,
requiring any programming even if simplified will likely deter
some non-technical members from contributing and elevate
the power of technical members. For instance, while the code
underlying policies provides a measure of transparency, in
practice, end users may not be equipped to judge policies.

Our vision for PolicyKit is that eventually any community
will be able to use it, regardless of programming skill. To
that end, this work serves as a low-level framework—a gover-
nance kernel—upon which higher-level systems can be built
that better target end users. Moving forward, PolicyKit could
include templates for declaratively authoring common types
of policies. For instance, a basic “direct democracy” form
would simply need the author to specify the minimum number
of votes, the ratio of votes needed to pass, and the maximum
amount of time to vote. As communities use PolicyKit, we
could study common policies to inform new templates and
discover what configurations are important to expose in a tem-
plate [13]. In addition, currently only one developer is needed
to author a platform integration before anyone on the platform
can use it. However, PolicyKit could include forms for end
users to specify platform integrations. As platform have sim-
ilar authentication workflows and API-calling logic [2], the
main work is just to list all actions with their corresponding
web API endpoints and URL parameters.

Designing for Good Governance
Using PolicyKit, communities can try out different gover-
nance models to see what suits them. Existing infrastructure
for experimentation [52] could even be incorporated to help
communities trial new designs. But coming up with good
governance can be tricky. Researchers have established princi-
ples based on studies of existing online communities or offline
governments. For instance, research has found that people
who get their post removed are less likely to re-offend if they
receive a removal explanation [31]. Other research uncovered
preferences for alternatives to typically punitive governance
systems that instead center victims [66]. However, community
members likely do not know about all this prior research. Cur-
rently, PolicyKit can be used to create governments with all
manner of power distributions and procedures that are just or
unjust, efficient or bureaucratic. Instead of every community
learning through trial and error, PolicyKit could help commu-
nities succeed faster by incorporating suggestions to authors
based on prior literature. A centralized repository of policies
would also allow communities to more effectively learn from
and build upon the work of others.

Finally, PolicyKit could help communities better transition
through different stages of their life cycle [61]. Currently,
communities begin with a starter kit consisting of a blanket
constitution policy requiring majority vote. More research is
needed to determine what kinds of governance are best suited
to new communities and what other options we could provide
at the outset. Conversely, communities that are older and al-
ready have a strong set of norms and rules may need a different
approach to migrate to use PolicyKit. Communities may also
need to quickly adapt their governance as they grow [35], as
larger communities tend to require more rules [21]. For ex-
ample, as contributors grow in open-source projects, original
owners shift to administrative roles, and the organizational
structure changes to a distributed coordination model [47].
Over time, the growth of rules can even evolve into bureaucra-
cies [6, 59] or oligarchies [67] and may need to evolve again to
better retain new members [68]. Better monitoring capabilities
could support communities in recognizing these challenges
and allow them to pivot their governance to address them.

Adversarial Usage
Currently, PolicyKit requires cooperation between commu-
nity members and admins on the platform because admins
still have the ability to revoke PolicyKit’s privileged access
token, uninstalling it from the community. This vulnerability
is a downside of software infrastructure for governance that
exists separate from the technical permissions embedded in a
platform and thus can never fully supersede it. However, this
vulnerability exists whether communities use PolicyKit or not,
as admins have the power to disregard rules or even delete the
community. In addition, platforms may have platform-wide
policies such as a Terms of Service and a centralized process
for enforcement. PolicyKit cannot and is not intended to over-
ride platform-wide policies of this nature. Instead, PolicyKit
operates in the wide space of decisions above the relatively
low bar that platforms set for unwanted behavior.

There are other forms of adversarial usage that may arise as
communities use PolicyKit. One issue is loopholes, obscured
by code or accidentally added, similar to text loopholes in
complicated legal documents or the game Nomic [69]. Much
like one needs a lawyer to parse legal documents, it may
take technical expertise to discover loopholes in code. How
can communities recover from loopholes? In the worst case,
if the entire government comes to a standstill, it should be
possible to restart governance from the beginning or roll back
a number of actions. Of course, these capabilities need to be
designed so that they are not exploited as well. A separate
vulnerability arises from the PolicyKit system itself being
hosted on a centralized webserver and database. Communities
can use our hosted site or host their own instance, but in either
case, access to the infrastructure is concentrated in a few hands.
Novel distributed architectures or blockchain databases could
potentially reduce this vulnerability in the future.

LIMITATIONS AND FUTURE WORK
While we have demonstrated the expressivity of PolicyKit and
its technical ability to govern communities, we have left to
future work longitudinal field studies with online communities.
As is, this work presents a low level framework upon which
additional research and development is needed to open up
policy-making capabilities for non-programmers and provide
resources for communities to design good governance. We aim
to work with a number of initial communities to understand
what they wish to create as well as uncover usability issues.
These deployments with real communities will also allow us
to co-design more sophisticated policies that can address real-
world challenges that may arise, from the rise of politics or
coordinated factions to loopholes and unrecoverable states.

CONCLUSION
In this work, we present PolicyKit, a novel software infrastruc-
ture that empowers online communities to succinctly author a
broad range of governance models that can then be carried out
on their home platform. PolicyKit’s expressiveness lies in its
shift from the status quo of describing governance in terms of
roles that are assigned permissions, towards articulating pro-
cedures for determining what is permissible. We demonstrate
through examples how procedures allow for the expression of
a diversity of governance models, from elections, to reputation
systems, to deliberative democracy.

In addition, the design of PolicyKit’s infrastructure rests on the
abstraction of governance as a series of actions that are succes-
sively proposed, and policies that are continually evaluating
those actions. This abstraction allows us to simplify the exe-
cution of governance on users’ home platforms so that writing
a policy means only implementing several short functions. It
also enables not only everyday governance execution but also
the gradual evolution of governance models by communities
as they too evolve over time.

Taken altogether, PolicyKit significantly reduces barriers for
communities to build their own governance. More powerfully,
it instantiates a framework upon which additional systems can
be built that continue to lower barriers to participation and
broaden communities’ governance capabilities.

ACKNOWLEDGEMENTS
Thank you to the Stanford HCI group and the MetaGov group
for feedback, particularly Mark Whiting, Joseph Seering, Will
Crichton, Evan Strasnick, Mitchell Gordon, and Seth Frey.

REFERENCES
[1] Ali Alkhatib and Michael Bernstein. 2019. Street-Level

Algorithms: A Theory at the Gaps Between Policy and
Decisions. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1–13.

[2] Tarfah Alrashed, Jumana Almahmoud, Amy X. Zhang,
and David Karger. 2020. ScrAPIr: Making Web Data
APIs Accessible to End Users. In Proceedings of the
2020 CHI conference on human factors in computing
systems.

[3] John Perry Barlow. 1996. A Declaration of the
Independence of Cyberspace. (1996). https:
//projects.eff.org/~barlow/Declaration-Final.html

[4] Susan L Bryant, Andrea Forte, and Amy Bruckman.
2005. Becoming Wikipedian: transformation of
participation in a collaborative online encyclopedia. In
Proceedings of the 2005 international ACM SIGGROUP
conference on Supporting group work. 1–10.

[5] Moira Burke and Robert Kraut. 2008. Mopping up:
modeling wikipedia promotion decisions. In
Proceedings of the 2008 ACM conference on Computer
supported cooperative work. 27–36.

[6] Brian Butler, Elisabeth Joyce, and Jacqueline Pike. 2008.
Don’t look now, but we’ve created a bureaucracy: the
nature and roles of policies and rules in wikipedia. In
Proceedings of the SIGCHI conference on human
factors in computing systems. 1101–1110.

[7] Alissa Centivany and Bobby Glushko. 2016. "Popcorn
Tastes Good" Participatory Policymaking and Reddit’s
"AMAgeddon". In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems.
1126–1137.

[8] Eshwar Chandrasekharan, Chaitrali Gandhi,
Matthew Wortley Mustelier, and Eric Gilbert. 2019.
Crossmod: A Cross-Community Learning-based System
to Assist Reddit Moderators. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1–30.

[9] Noam Cohen. 2007. A contributor to Wikipedia has his
fictional side. New York Times 5 (2007), 5.

[10] Alexis De Tocqueville. 2003. Democracy in america.
Vol. 10. Regnery Publishing.

[11] Julian Dibbell. 1994. A rape in cyberspace or how an
evil clown, a Haitian trickster spirit, two wizards, and a
cast of dozens turned a database into a society. Ann.
Surv. Am. L. (1994), 471.

[12] Bryan Dosono and Bryan Semaan. 2019. Moderation
practices as emotional labor in sustaining online
communities: The case of AAPI identity work on
Reddit. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. 1–13.

[13] Jenny Fan and Amy X Zhang. 2020. Digital Juries: A
Civics-Oriented Approach to Platform Governance. In
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–14.

[14] Siamak Faridani, Ephrat Bitton, Kimiko Ryokai, and
Ken Goldberg. 2010. Opinion space: a scalable tool for
browsing online comments. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. 1175–1184.

[15] Cynthia Farina, Hoi Kong, Cheryl Blake, Mary Newhart,
and Nik Luka. 2013. Democratic deliberation in the
wild: The McGill online design studio and the
RegulationRoom project. Fordham Urb. LJ 41 (2013),
1527.

[16] Adam Fish, Luis FR Murillo, Lilly Nguyen, Aaron
Panofsky, and Christopher M Kelty. 2011. Birds of the
Internet: Towards a field guide to the organization and
governance of participation. Journal of Cultural
Economy 4, 2 (2011), 157–187.

[17] Andrea Forte, Vanesa Larco, and Amy Bruckman. 2009.
Decentralization in Wikipedia governance. Journal of
Management Information Systems 26, 1 (2009), 49–72.

[18] OpenJS Foundation. 2020. Project Governance.
https://nodejs.org/en/about/governance/

[19] Jo Freeman. 1972. The tyranny of structurelessness.
Berkeley Journal of Sociology (1972), 151–164.

[20] Seth Frey, PM Krafft, and Brian C Keegan. 2019. " This
Place Does What It Was Built For" Designing Digital
Institutions for Participatory Change. Proceedings of the
ACM on Human-Computer Interaction 3, CSCW (2019),
1–31.

[21] Seth Frey and Robert W Sumner. 2019. Emergence of
integrated institutions in a large population of
self-governing communities. PloS one 14, 7 (2019),
e0216335.

[22] R Stuart Geiger. 2014. Bots, bespoke, code and the
materiality of software platforms. Information,
Communication & Society 17, 3 (2014), 342–356.

[23] R Stuart Geiger. 2016. Bot-based collective blocklists in
Twitter: the counterpublic moderation of harassment in a
networked public space. Information, Communication &
Society 19, 6 (2016), 787–803.

[24] R Stuart Geiger and David Ribes. 2010. The work of
sustaining order in wikipedia: the banning of a vandal.
In Proceedings of the 2010 ACM conference on
Computer supported cooperative work. 117–126.

[25] Tarleton Gillespie. 2018. Custodians of the Internet:
Platforms, content moderation, and the hidden decisions
that shape social media. Yale University Press.

[26] Jonathan Grudin. 1994. Groupware and social dynamics:
Eight challenges for developers. Commun. ACM 37, 1
(1994), 92–105.

https://projects.eff.org/~barlow/Declaration-Final.html
https://projects.eff.org/~barlow/Declaration-Final.html
https://nodejs.org/en/about/governance/

[27] Steve Hardt and Lia CR Lopes. 2015. Google votes: A
liquid democracy experiment on a corporate social
network. (2015).

[28] Albert O Hirschman. 1970. Exit, voice, and loyalty:
Responses to decline in firms, organizations, and states.
Vol. 25. Harvard university press.

[29] Jane Im, Amy X Zhang, Christopher J Schilling, and
David Karger. 2018. Deliberation and Resolution on
Wikipedia: A Case Study of Requests for Comments.
Proceedings of the ACM on Human-Computer
Interaction 2, CSCW (2018), 1–24.

[30] Shagun Jhaver, Iris Birman, Eric Gilbert, and Amy
Bruckman. 2019a. Human-machine collaboration for
content regulation: The case of Reddit Automoderator.
ACM Transactions on Computer-Human Interaction
(TOCHI) 26, 5 (2019), 1–35.

[31] Shagun Jhaver, Amy Bruckman, and Eric Gilbert. 2019b.
Does transparency in moderation really matter? User
behavior after content removal explanations on reddit.
Proceedings of the ACM on Human-Computer
Interaction 3, CSCW (2019), 1–27.

[32] Shagun Jhaver, Sucheta Ghoshal, Amy Bruckman, and
Eric Gilbert. 2018. Online harassment and content
moderation: The case of blocklists. ACM Transactions
on Computer-Human Interaction (TOCHI) 25, 2 (2018),
1–33.

[33] Google Jigsaw. 2017. Perspective API. (2017).
Retrieved May 5, 2020 from
https://www.perspectiveapi.com

[34] Christopher Kelty and Seth Erickson. 2018. Two modes
of participation: A conceptual analysis of 102 cases of
Internet and social media participation from 2005–2015.
The Information Society 34, 2 (2018), 71–87.

[35] Charles Kiene, Andrés Monroy-Hernández, and
Benjamin Mako Hill. 2016. Surviving an eternal
september: How an online community managed a surge
of newcomers. In CHI. ACM, 1152–1156.

[36] Larry Kiser and Elinor Ostrom. 1982. The three worlds
of political action. Strategies of political inquiry.
Berverly Hilly: Sage (1982).

[37] Mark Klein. 2011. How to harvest collective wisdom on
complex problems: An introduction to the mit
deliberatorium. Center for Collective Intelligence
working paper (2011).

[38] Piotr Konieczny. 2009. Governance, organization, and
democracy on the Internet: The iron law and the
evolution of Wikipedia. In Sociological Forum, Vol. 24.
Wiley Online Library, 162–192.

[39] Piotr Konieczny. 2018. Volunteer retention, burnout and
dropout in online voluntary organizations: stress,
conflict and retirement of Wikipedians. Research in
Social Movements, Conflicts and Change (Volume 42).
Emerald Publishing Limited (2018), 199–219.

[40] Yubo Kou, Xinning Gui, Shaozeng Zhang, and Bonnie
Nardi. 2017. Managing disruptive behavior through
non-hierarchical governance: Crowdsourcing in League
of Legends and Weibo. Proceedings of the ACM on
Human-Computer Interaction 1, CSCW (2017), 1–17.

[41] Yubo Kou and Bonnie A Nardi. 2014. Governance in
League of Legends: A hybrid system. In Foundations of
Digital Games.

[42] Robert E Kraut and Paul Resnick. 2012. Building
successful online communities: Evidence-based social
design. Mit Press.

[43] Travis Kriplean, Jonathan Morgan, Deen Freelon, Alan
Borning, and Lance Bennett. 2012a. Supporting
reflective public thought with considerit. In Proceedings
of the ACM 2012 conference on Computer Supported
Cooperative Work. 265–274.

[44] Travis Kriplean, Michael Toomim, Jonathan Morgan,
Alan Borning, and Andrew Ko. 2012b. Is this what you
meant? Promoting listening on the web with reflect. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1559–1568.

[45] Cliff Lampe and Paul Resnick. 2004. Slash (dot) and
burn: distributed moderation in a large online
conversation space. In Proceedings of the SIGCHI
conference on Human factors in computing systems.
543–550.

[46] Kaitlin Mahar, Amy X Zhang, and David Karger. 2018.
Squadbox: A tool to combat email harassment using
friendsourced moderation. In Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems. 1–13.

[47] Danaja Maldeniya, Ceren Budak, Lionel Robert, and
Daniel Romero. 2020. Herding a Deluge of Good
Samaritans: How GitHub Projects Respond to Increased
Attention. DOI:
http://dx.doi.org/10.1145/3366423.3380272

[48] Thomas W Malone and Mark Klein. 2007. Harnessing
collective intelligence to address global climate change.
Innovations: Technology, Governance, Globalization 2,
3 (2007), 15–26.

[49] Lena Mamykina, Bella Manoim, Manas Mittal, George
Hripcsak, and Björn Hartmann. 2011. Design lessons
from the fastest q&a site in the west. In Proceedings of
the SIGCHI conference on Human factors in computing
systems. 2857–2866.

[50] J Nathan Matias. 2016. Going dark: Social factors in
collective action against platform operators in the Reddit
blackout. In Proceedings of the 2016 CHI conference on
human factors in computing systems. 1138–1151.

[51] J Nathan Matias. 2019. Preventing harassment and
increasing group participation through social norms in
2,190 online science discussions. Proceedings of the
National Academy of Sciences 116, 20 (2019),
9785–9789.

https://www.perspectiveapi.com
http://dx.doi.org/10.1145/3366423.3380272

[52] J Nathan Matias and Merry Mou. 2018. CivilServant:
Community-led experiments in platform governance. In
Proceedings of the 2018 CHI conference on human
factors in computing systems. 1–13.

[53] Michael D McGinnis. 2011. An introduction to IAD and
the language of the Ostrom workshop: a simple guide to
a complex framework. Policy Studies Journal 39, 1
(2011), 169–183.

[54] Michael D McGinnis and Elinor Ostrom. 2014.
Social-ecological system framework: initial changes and
continuing challenges. Ecology and Society 19, 2 (2014).

[55] Jennifer L Mnookin. 1996. Virtual (ly) law: The
emergence of law in LambdaMoo: Mnookin. Journal of
computer-mediated communication 2, 1 (1996),
JCMC214.

[56] Claudia Müller-Birn, Leonhard Dobusch, and James D
Herbsleb. 2013. Work-to-rule: the emergence of
algorithmic governance in Wikipedia. In Proceedings of
the 6th International Conference on Communities and
Technologies. 80–89.

[57] Brad Myers, Scott E Hudson, and Randy Pausch. 2000.
Past, present, and future of user interface software tools.
ACM Transactions on Computer-Human Interaction
(TOCHI) 7, 1 (2000), 3–28.

[58] Beth Simone Noveck. 2009. Wiki government: How
technology can make government better, democracy
stronger, and citizens more powerful. Brookings
Institution Press.

[59] Siobhán O’mahony and Fabrizio Ferraro. 2007. The
emergence of governance in an open source community.
Academy of Management Journal 50, 5 (2007),
1079–1106.

[60] Elinor Ostrom. 1990. Governing the commons-The
evolution of institutions for collective actions. Political
economy of institutions and decisions.

[61] Sam Ransbotham and Gerald C Kane. 2011.
Membership turnover and collaboration success in
online communities: Explaining rises and falls from
grace in Wikipedia. Mis Quarterly (2011), 613–627.

[62] Eric S Raymond. 1998. Homesteading the noosphere.
(1998).

[63] Sarah T Roberts. 2019. Behind the screen: Content
moderation in the shadows of social media. Yale
University Press.

[64] Niloufar Salehi, Lilly C Irani, Michael S Bernstein, Ali
Alkhatib, Eva Ogbe, and Kristy Milland. 2015. We are
dynamo: Overcoming stalling and friction in collective
action for crowd workers. In Proceedings of the 33rd
annual ACM conference on human factors in computing
systems. 1621–1630.

[65] Nathan Schneider. 2019. Admins, Mods, and
Benevolent Dictators for Life: The Implicit Feudalism
of Online Communities. (2019).
https://ntnsndr.in/implicit-feudalism

[66] Sarita Schoenebeck, Oliver L Haimson, and Lisa
Nakamura. 2020. Drawing from justice theories to
support targets of online harassment. new media &
society (2020), 1461444820913122.

[67] Aaron Shaw and Benjamin M. Hill. 2014. Laboratories
of Oligarchy? How the Iron Law Extends to Peer
Production. Journal of Communication 64, 2 (03 2014),
215–238.

[68] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa,
and David Redmiles. 2015. Social barriers faced by
newcomers placing their first contribution in open
source software projects. In Proceedings of the 18th
ACM conference on Computer supported cooperative
work & social computing. 1379–1392.

[69] Peter Suber. 1990. Appendix 3: Nomic: A Game of
Self-Amendment. In The Paradox of Self-Amendment: A
Study of Law, Logic, Omnipotence, and Change. Peter
Lang. https://dash.harvard.edu/handle/1/10288408

[70] Amy X Zhang, Lea Verou, and David Karger. 2017.
Wikum: Bridging discussion forums and wikis using
recursive summarization. In Proceedings of the 2017
ACM Conference on Computer Supported Cooperative
Work and Social Computing. 2082–2096.

[71] Lei Zheng, Christopher M Albano, Neev M Vora, Feng
Mai, and Jeffrey V Nickerson. 2019. The Roles Bots
Play in Wikipedia. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1–20.

https://ntnsndr.in/implicit-feudalism
https://dash.harvard.edu/handle/1/10288408

	Introduction
	Background and Motivation
	PolicyKit: Building Governance with Software
	Abstractions: Actions and Policies
	Layers: Platform and Constitution

	PolicyKit Software Infrastructure

	PolicyKit Data Model
	Policies and the PolicyEngine Workflow
	Software Library and Security

	Integrating Platforms with PolicyKit
	Performance and Scaleability

	Web Interface
	Data Model Extensions
	Examples
	Wikipedia Request for Adminship
	Election
	Two-Round Caucus: Pipelined policies
	Toxicity Filter on Comments
	Reputation System

	Discussion
	Extending Expressivity of Governance Authoring
	Building Towards End Users
	Designing for Good Governance
	Adversarial Usage

	Limitations and Future Work
	Conclusion
	Acknowledgements
	References

